👏👏ແກ້ບົດເຝິກຫັດມ.7ບົດທີ1

1️⃣ ຂັ້ນຕອນ 1: ໃຊ້ວິທີ Euclidean ເພື່ອຫາ gcd(758,242)\gcd(758, 242)

ຫາເສດຈາກການຫານ:






2️⃣ ຂັ້ນຕອນ 2: ແທນກັບເພື່ອຫາຄ່າ x,yx, y

ເລີ່ມຈາກສົມການສຸດທ້າຍ:

ຈາກ (5):

2=144×32 = 14 - 4 \times 3

ຈາກ (4): 4=18144 = 18 - 14 ແທນເຂົ້າໄປ:

2=14(1814)×32 = 14 - (18 - 14)\times 3 2=14[1814]×32 = 14 - [18 - 14]\times 3 2=143(1814)2 = 14 - 3(18 - 14) 2=143(18)+3(14)2 = 14 - 3(18) + 3(14) 2=14+3(14)3(18)2 = 14 + 3(14) - 3(18) 2=4(14)3(18)2 = 4(14) - 3(18)

ຈາກ (3): 14=321814 = 32 - 18

2=4(3218)3(18)2 = 4(32 - 18) - 3(18) 2=4(32)4(18)3(18)2 = 4(32) - 4(18) - 3(18) 2=1284(18)3(18)2 = 128 - 4(18) - 3(18) 2=1287(18)2 = 128 - 7(18) 2=1281262 = 128 - 126 2=22 = 2

ຈາກ (2): 18=24232×718 = 242 - 32 \times 7

2=1287[24232×7]2 = 128 - 7[242 - 32 \times 7] 2=1287(242)+49(32)2 = 128 - 7(242) + 49(32) 2=1281694+15682 = 128 - 1694 + 1568 2=22 = 2

ຈາກ (1): 32=758242×332 = 758 - 242 \times 3

2=49[758242×3]7(242)2 = 49[758 - 242 \times 3] - 7(242) 2=49(758)147(242)7(242)2 = 49(758) - 147(242) - 7(242) 2=49(758)154(242)2 = 49(758) - 154(242)


3️⃣ ສະຫຼຸບຄຳຕອບ:

gcd(758,242)=758(49)+242(154)\gcd(758, 242) = 758(49) + 242(-154)

ດັ່ງນັ້ນ:

  • x=49x = 49
  • y=154y = -154

💡 ຄຳຕອບສຸດທ້າຍ:

gcd(758,242)=2=758(49)+242(154)